Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(41): e2208875119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191223

RESUMO

Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in Escherichia coli has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork. In this study, we use single-molecule imaging in live E. coli cells to investigate this SSB-dependent enrichment of Pol IV. We find that Pol IV is enriched through its interaction with SSB in response to a range of different replication stresses and that changes in SSB dynamics at stalled forks may explain this conditional Pol IV enrichment. Finally, we show that other SSB-interacting proteins are likewise selectively enriched in response to replication perturbations, suggesting that this mechanism is likely a general one for enrichment of repair factors near stalled replication forks.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
Nat Struct Mol Biol ; 29(9): 932-941, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36127468

RESUMO

Processivity clamps tether DNA polymerases to DNA, allowing their access to the primer-template junction. In addition to DNA replication, DNA polymerases also participate in various genome maintenance activities, including translesion synthesis (TLS). However, owing to the error-prone nature of TLS polymerases, their association with clamps must be tightly regulated. Here we show that fork-associated ssDNA-binding protein (SSB) selectively enriches the bacterial TLS polymerase Pol IV at stalled replication forks. This enrichment enables Pol IV to associate with the processivity clamp and is required for TLS on both the leading and lagging strands. In contrast, clamp-interacting proteins (CLIPs) lacking SSB binding are spatially segregated from the replication fork, minimally interfering with Pol IV-mediated TLS. We propose that stalling-dependent structural changes within clusters of fork-associated SSB establish hierarchical access to the processivity clamp. This mechanism prioritizes a subset of CLIPs with SSB-binding activity and facilitates their exchange at the replication fork.


Assuntos
Proteínas de Ligação a DNA , Escherichia coli , DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
3.
J Biol Chem ; 295(28): 9542-9550, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32430399

RESUMO

Bacteriophage T7 encodes its own DNA polymerase, the product of gene 5 (gp5). In isolation, gp5 is a DNA polymerase of low processivity. However, gp5 becomes highly processive upon formation of a complex with Escherichia coli thioredoxin, the product of the trxA gene. Expression of a gp5 variant in which aspartate residues in the metal-binding site of the polymerase domain were replaced by alanine is highly toxic to E. coli cells. This toxicity depends on the presence of a functional E. coli trxA allele and T7 RNA polymerase-driven expression but is independent of the exonuclease activity of gp5. In vitro, the purified gp5 variant is devoid of any detectable polymerase activity and inhibited DNA synthesis by the replisomes of E. coli and T7 in the presence of thioredoxin by forming a stable complex with DNA that prevents replication. On the other hand, the highly homologous Klenow fragment of DNA polymerase I containing an engineered gp5 thioredoxin-binding domain did not exhibit toxicity. We conclude that gp5 alleles encoding inactive polymerases, in combination with thioredoxin, could be useful as a shutoff mechanism in the design of a bacterial cell-growth system.


Assuntos
Bacteriófago T7 , Replicação do DNA , DNA Viral , DNA Polimerase Dirigida por DNA , Proteínas de Escherichia coli , Escherichia coli , Tiorredoxinas , Bacteriófago T7/enzimologia , Bacteriófago T7/genética , DNA Viral/biossíntese , DNA Viral/química , DNA Viral/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/virologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Domínios Proteicos , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(51): 25591-25601, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796591

RESUMO

DNA lesions stall the replisome and proper resolution of these obstructions is critical for genome stability. Replisomes can directly replicate past a lesion by error-prone translesion synthesis. Alternatively, replisomes can reprime DNA synthesis downstream of the lesion, creating a single-stranded DNA gap that is repaired primarily in an error-free, homology-directed manner. Here we demonstrate how structural changes within the Escherichia coli replisome determine the resolution pathway of lesion-stalled replisomes. This pathway selection is controlled by a dynamic interaction between the proofreading subunit of the replicative polymerase and the processivity clamp, which sets a kinetic barrier to restrict access of translesion synthesis (TLS) polymerases to the primer/template junction. Failure of TLS polymerases to overcome this barrier leads to repriming, which competes kinetically with TLS. Our results demonstrate that independent of its exonuclease activity, the proofreading subunit of the replisome acts as a gatekeeper and influences replication fidelity during the resolution of lesion-stalled replisomes.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA Bacteriano , DNA Polimerase Dirigida por DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
5.
Nat Commun ; 8(1): 2170, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255195

RESUMO

Unrepaired DNA lesions are a potent block to replication, leading to replication fork collapse, double-strand DNA breaks, and cell death. Error-prone polymerases overcome this blockade by synthesizing past DNA lesions in a process called translesion synthesis (TLS), but how TLS polymerases gain access to the DNA template remains poorly understood. In this study, we use particle-tracking PALM to image live Escherichia coli cells containing a functional fusion of the endogenous copy of Pol IV to the photoactivatable fluorescent protein PAmCherry. We find that Pol IV is strongly enriched near sites of replication only upon DNA damage. Surprisingly, we find that the mechanism of Pol IV recruitment is dependent on the type of DNA lesion, and that interactions with proteins other than the processivity factor ß play a role under certain conditions. Collectively, these results suggest that multiple interactions, influenced by lesion identity, recruit Pol IV to sites of DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Replicação do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Microscopia de Fluorescência/métodos , Mutação , Ligação Proteica
6.
Nucleic Acids Res ; 44(13): e118, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27185891

RESUMO

Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replication product is tagged with a unique nucleotide sequence before amplification. This allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.


Assuntos
Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mapeamento Cromossômico/métodos , Humanos , Análise de Sequência de DNA
7.
Nucleic Acids Res ; 44(4): 1681-90, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26657641

RESUMO

Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a stable ternary complex of Pol II, the replicative polymerase Pol III core complex and the dimeric processivity clamp, ß. Single-molecule experiments reveal that the interactions of Pol II and Pol III with ß allow for rapid exchange during DNA synthesis. As with another TLS polymerase, Pol IV, increasing concentrations of Pol II displace the Pol III core during DNA synthesis in a minimal reconstitution of primer extension. However, in contrast to Pol IV, Pol II is inefficient at disrupting rolling-circle synthesis by the fully reconstituted Pol III replisome. Together, these data suggest a ß-mediated mechanism of exchange between Pol II and Pol III that occurs outside the replication fork.


Assuntos
DNA Polimerase III/genética , DNA Polimerase II/genética , DNA Polimerase beta/genética , DNA/biossíntese , DNA/genética , Dano ao DNA/genética , DNA Polimerase II/química , DNA Polimerase III/química , DNA Polimerase beta/química , Reparo do DNA/genética , Replicação do DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Estrutura Terciária de Proteína
8.
PLoS One ; 7(9): e45651, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029161

RESUMO

We describe the design, construction and validation of a fluorescence sensor to measure activation by agonist of the m1 muscarinic cholinergic receptor, a prototypical class I G(q)-coupled receptor. The sensor uses an established general design in which Förster resonance energy transfer (FRET) from a circularly permuted CFP mutant to FlAsH, a selectively reactive fluorescein, is decreased 15-20% upon binding of a full agonist. Notably, the sensor displays essentially wild-type capacity to catalyze activation of Gα(q), and the purified and reconstituted sensor displays appropriate regulation of affinity for agonists by G(q). We describe the strategies used to increase the agonist-driven change in FRET while simultaneously maintaining regulatory interactions with Gα(q), in the context of the known structures of Class I G protein-coupled receptors. The approach should be generally applicable to other Class I receptors which include numerous important drug targets.


Assuntos
Técnicas Biossensoriais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptor Muscarínico M1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Biocatálise , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência
9.
Curr Biol ; 21(23): 1979-87, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22119528

RESUMO

BACKGROUND: PLC-ß signaling is generally thought to be mediated by allosteric activation by G proteins and Ca(2+). Although availability of the phosphatidylinositol-4,5-biphosphate (PIP(2)) substrate is limiting in some cases, its production has not been shown to be independently regulated as a signaling mechanism. WNK1 protein kinase is known to regulate ion homeostasis and cause hypertension when expression is increased by gene mutations. However, its signaling functions remain largely elusive. RESULTS: Using diacylglycerol-stimulated TRPC6 and inositol trisphosphate-mediated Ca(2+) transients as cellular biosensors, we show that WNK1 stimulates PLC-ß signaling in cells by promoting the synthesis of PIP(2) via stimulation of phosphatidylinositol 4-kinase IIIα. WNK1 kinase activity is not required. Stimulation of PLC-ß by WNK1 and by Gα(q) are synergistic; WNK1 activity is essential for regulation of PLC-ß signaling by G(q)-coupled receptors, and basal input from G(q) is necessary for WNK1 signaling via PLC-ß. WNK1 further amplifies PLC-ß signaling when it is phosphorylated by Akt kinase in response to insulin-like growth factor. CONCLUSIONS: WNK1 is a novel regulator of PLC-ß that acts by controlling substrate availability. WNK1 thereby coordinates signaling between G protein and Akt kinase pathways. Because PIP(2) is itself a signaling molecule, regulation of PIP(2) synthesis by WNK1 also allows the cell to initiate PLC signaling while independently controlling the effects of PIP(2) on other targets. These findings describe a new signaling pathway for Akt-activating growth factors, a mechanism for G protein-growth factor crosstalk, and a means to independently control PLC signaling and PIP(2) availability.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/biossíntese , Fosfolipase C beta/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , DNA Complementar/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Antígenos de Histocompatibilidade Menor , Oligonucleotídeos Antissenso/genética , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Ratos , Transdução de Sinais/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Proteína Quinase 1 Deficiente de Lisina WNK
10.
Proc Natl Acad Sci U S A ; 101(31): 11328-33, 2004 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-15263087

RESUMO

Activation of telomerase is crucial for cells to gain immortality. Most normal human somatic cells have a limited proliferative life span, and expression of the rate-limiting telomerase catalytic subunit, known as human telomerase reverse transcriptase (hTERT), has been believed to be tightly repressed. This model of hTERT regulation is challenged by the recent identification of the induction of hTERT in normal cycling human fibroblasts during their transit through S phase. Here we show the small-molecule-based identification of the assembly and disassembly of E2F-pocket protein-histone deacetylase (HDAC) complex as a key mechanistic basis for the repression and activation of hTERT in normal human cells. A cell-based chemical screen was used to identify a small molecule, CGK1026, that derepresses hTERT expression. CGK1026 inhibits the recruitment of HDAC into E2F-pocket protein complexes assembled on the hTERT promoter. Chromatin immunoprecipitation analysis reveals dynamic alterations in hTERT promoter occupancy by E2F and pocket proteins according to the cell cycle-dependent regulation of hTERT. Dominant-negative or protein-knockout strategies to disrupt the assembly of E2F-pocket protein-HDAC complex derepress hTERT and telomerase activity. Taken together with the results on the regulatory function of these complexes in cellular senescence and tumorigenesis, our findings suggest that dynamic assembly of E2F-pocket protein-HDAC complex plays a central role in the regulation of hTERT in a variety of proliferative conditions (e.g., normal cycling, senescent, and tumor cells).


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/metabolismo , Telomerase/metabolismo , Fatores de Transcrição/metabolismo , Divisão Celular/fisiologia , Linhagem Celular , Senescência Celular/fisiologia , Fatores de Transcrição E2F , Indução Enzimática/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Teste de Complementação Genética , Humanos , Regiões Promotoras Genéticas , Telomerase/genética
11.
J Biol Chem ; 278(17): 15272-8, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12582166

RESUMO

Interferon regulatory factor 3 (IRF3) is activated in response to various environmental stresses including viral infection and DNA-damaging agents. However, the biological function of IRF3 in cell growth is not well understood. We demonstrated that IRF3 markedly inhibited growth and colony formation of cells. IRF3 blocked DNA synthesis and induced apoptosis. Based on this negative control of cell growth by IRF3, we examined whether functional loss of IRF3 may contribute to oncogenic transformation. IRF3 activity was specifically inhibited by expression of its dominant negative mutant. This mutant lacks a portion of the DNA binding domain like IRF3a, an alternative splice form of IRF3 in the cells. This dominant negative inhibition blocked expression of specific IRF3 target genes. Mutant IRF3 efficiently transformed NIH3T3 cells, as demonstrated by anchorage-independent growth in soft agar and tumorigenicity in nude mice. These results imply that IRF3 may function as a tumor suppressor and suggest a possible role for the relative levels of IRF3 and its dominant negative mutant in tumorigenesis.


Assuntos
Proteínas de Ligação a DNA/genética , Mutação , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Células 3T3 , Animais , Apoptose , Sítios de Ligação/genética , Divisão Celular , Transformação Celular Neoplásica/genética , Replicação do DNA , Proteínas de Ligação a DNA/fisiologia , Genes Dominantes , Células HeLa , Humanos , Fator Regulador 3 de Interferon , Camundongos , Camundongos Nus , Transplante de Neoplasias , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...